Regional patterns of precipitation extremes on various timescales

Raul R. Wood

Department of Geography
LMU Munich
raul.wood@lmu.de
www.climex-project.org
“Extreme precipitation events over most of the mid-latitude land masses and over wet tropical regions will very likely become more intense and more frequent.” - IPCC AR5 report

ClimEx results confirm this!
Internal Variability in a SMILE

50 possible future changes for PRC (in %) between 2020-2039 and 2000-2019 over Europe from CanESM2-CRCM5 at a 12-km resolution

Leduc et al. 2019, JAMC
Maximum Precipitation in the CRCM5-LE

What precipitation indices are we looking at and on what timescales?

Rx1h (maximum hourly precipitation), Rx1d (maximum daily precipitation), Rx5d (maximum 5 day precipitation) for seasons DJF, MAM, JJA and SON

Rx1h

Reference (1980-2009)

Rx5d

Reference (1980-2009)

50-Member mean climatology of Rx1h (left) and Rx5d (right) for DJF (a), MAM (b), JJA (c) and SON (d)
Forced Signal over Europe (RxN)

50-Member forced signal of extreme precipitation by 2070-2099 for DJF (e), MMA (f), JJA (g) and SON (h). Hatched areas do not show significant trends following a two-sided t-test with unequal variances and a p-value of 0.01.

© Raul Wood
Evolution of RxN and internal variability

Internal Variability
- highest in summer
- higher for shorter extremes
- increasing (except SEUR in summer)
- contribution strong in 1st half of the century

Signals
- sub-daily extremes strongest
- in summer mean and extremes show opposite trends
- emerging signals by mid of the century
Can changes in maximum precipitation be explained by thermodynamics?

The Clausius-Clapeyron relation states an increase of precipitation by 6-7%/K.
Changes in specific humidity (huss)

Global warming is intensifying the global water cycle resulting in air columns holding more water.

50-Member mean climatology of specific humidity near surface (left) and forced signal (right) for DJF (a), MMA (b), JJA (c) and SON (d). All areas show significant trends following a two-sided t-test with unequal variances and a p-value of 0.01.

© Raul Wood
Changes in the Bowen ratio (bo)

From warming temperatures and declining summerly rainfall we can expect and increased sensible heat flux resulting in increased aridity and reduced evaporation.

50-Member mean Bowen ratio for 1980-09 (left) and forced signal (right) for DJF (e), MMA (f), JJA (g) and SON (h). The Bowen ratio is calculated as the ratio of sensible heat flux (h_{fss}) and latent heat flux (h_{fls}). The Bowen ratio is less than one over surfaces with abundant water supplies. Negative Bowen ratio means a downward direction indicating advection.
Synthesis

Can changes in maximum precipitation be explained by thermodynamics?

Δ specific humidity

Δ Bowden Ratio

Δ rx1h

rx1h scaling
Take-Home

- SMILE simulations are needed to determine the ‘true’ forced response
- Northward shifting negative trends in summerly extremes

- Internal variability is important in 1st half of the century
- Increasing internal variability
- Emerging trends of extremes by mid of the century

- Hourly maximum precipitation shows stronger scaling with global temperature
- In higher latitudes thermodynamics contribute to changes in maximum precipitation
- Other regions are stronger influenced by dynamic changes